Gemini
Usage
import { Gemini, Settings, GEMINI_MODEL } from "llamaindex";
Settings.llm = new Gemini({
model: GEMINI_MODEL.GEMINI_PRO,
});
Usage with Vertex AI
To use Gemini via Vertex AI you can use GeminiVertexSession
.
GeminiVertexSession accepts the env variables: GOOGLE_VERTEX_LOCATION
and GOOGLE_VERTEX_PROJECT
import { Gemini, GEMINI_MODEL, GeminiVertexSession } from "llamaindex";
const gemini = new Gemini({
model: GEMINI_MODEL.GEMINI_PRO,
session: new GeminiVertexSession({
location: "us-central1", // optional if provided by GOOGLE_VERTEX_LOCATION env variable
project: "project1", // optional if provided by GOOGLE_VERTEX_PROJECT env variable
googleAuthOptions: {...}, // optional, but useful for production. It accepts all values from `GoogleAuthOptions`
}),
});
To authenticate for local development:
npm install @google-cloud/vertexai
gcloud auth application-default login
To authenticate for production you'll have to use a service account. googleAuthOptions
has credentials
which might be useful for you.
Load and index documents
For this example, we will use a single document. In a real-world scenario, you would have multiple documents to index.
const document = new Document({ text: essay, id_: "essay" });
const index = await VectorStoreIndex.fromDocuments([document]);
Query
const queryEngine = index.asQueryEngine();
const query = "What is the meaning of life?";
const results = await queryEngine.query({
query,
});
Full Example
import {
Gemini,
Document,
VectorStoreIndex,
Settings,
GEMINI_MODEL,
} from "llamaindex";
Settings.llm = new Gemini({
model: GEMINI_MODEL.GEMINI_PRO,
});
async function main() {
const document = new Document({ text: essay, id_: "essay" });
// Load and index documents
const index = await VectorStoreIndex.fromDocuments([document]);
// Create a query engine
const queryEngine = index.asQueryEngine({
retriever,
});
const query = "What is the meaning of life?";
// Query
const response = await queryEngine.query({
query,
});
// Log the response
console.log(response.response);
}