Fireworks LLM
Fireworks.ai focus on production use cases for open source LLMs, offering speed and quality.
Usage
import { FireworksLLM, Settings } from "llamaindex";
Settings.llm = new FireworksLLM({
apiKey: "<YOUR_API_KEY>",
});
Load and index documents
For this example, we will load the Berkshire Hathaway 2022 annual report pdf
const reader = new PDFReader();
const documents = await reader.loadData("../data/brk-2022.pdf");
// Split text and create embeddings. Store them in a VectorStoreIndex
const index = await VectorStoreIndex.fromDocuments(documents);
Query
const queryEngine = index.asQueryEngine();
const response = await queryEngine.query({
query: "What mistakes did Warren E. Buffett make?",
});
Full Example
import { VectorStoreIndex } from "llamaindex";
import { PDFReader } from "llamaindex/readers/PDFReader";
async function main() {
// Load PDF
const reader = new PDFReader();
const documents = await reader.loadData("../data/brk-2022.pdf");
// Split text and create embeddings. Store them in a VectorStoreIndex
const index = await VectorStoreIndex.fromDocuments(documents);
// Query the index
const queryEngine = index.asQueryEngine();
const response = await queryEngine.query({
query: "What mistakes did Warren E. Buffett make?",
});
// Output response
console.log(response.toString());
}
main().catch(console.error);