Qdrant Vector Store
To run this example, you need to have a Qdrant instance running. You can run it with Docker:
docker pull qdrant/qdrant
docker run -p 6333:6333 qdrant/qdrant
Importing the modules
import fs from "node:fs/promises";
import { Document, VectorStoreIndex, QdrantVectorStore } from "llamaindex";
Load the documents
const path = "node_modules/llamaindex/examples/abramov.txt";
const essay = await fs.readFile(path, "utf-8");
Setup Qdrant
const vectorStore = new QdrantVectorStore({
url: "http://localhost:6333",
});
Setup the index
const document = new Document({ text: essay, id_: path });
const index = await VectorStoreIndex.fromDocuments([document], {
vectorStore,
});
Query the index
const queryEngine = index.asQueryEngine();
const response = await queryEngine.query({
query: "What did the author do in college?",
});
// Output response
console.log(response.toString());
Full code
import fs from "node:fs/promises";
import { Document, VectorStoreIndex, QdrantVectorStore } from "llamaindex";
async function main() {
const path = "node_modules/llamaindex/examples/abramov.txt";
const essay = await fs.readFile(path, "utf-8");
const vectorStore = new QdrantVectorStore({
url: "http://localhost:6333",
});
const document = new Document({ text: essay, id_: path });
const index = await VectorStoreIndex.fromDocuments([document], {
vectorStore,
});
const queryEngine = index.asQueryEngine();
const response = await queryEngine.query({
query: "What did the author do in college?",
});
// Output response
console.log(response.toString());
}
main().catch(console.error);