Ollama
Usage
import { Ollama, Settings } from "llamaindex";
Settings.llm = ollamaLLM;
Settings.embedModel = ollamaLLM;
Load and index documents
For this example, we will use a single document. In a real-world scenario, you would have multiple documents to index.
const document = new Document({ text: essay, id_: "essay" });
const index = await VectorStoreIndex.fromDocuments([document]);
Query
const queryEngine = index.asQueryEngine();
const query = "What is the meaning of life?";
const results = await queryEngine.query({
query,
});
Full Example
import { Ollama, Document, VectorStoreIndex, Settings } from "llamaindex";
import fs from "fs/promises";
const ollama = new Ollama({ model: "llama2", temperature: 0.75 });
// Use Ollama LLM and Embed Model
Settings.llm = ollama;
Settings.embedModel = ollama;
async function main() {
const essay = await fs.readFile("./paul_graham_essay.txt", "utf-8");
const document = new Document({ text: essay, id_: "essay" });
// Load and index documents
const index = await VectorStoreIndex.fromDocuments([document]);
// get retriever
const retriever = index.asRetriever();
// Create a query engine
const queryEngine = index.asQueryEngine({
retriever,
});
const query = "What is the meaning of life?";
// Query
const response = await queryEngine.query({
query,
});
// Log the response
console.log(response.response);
}